Conversion of aryl iodides into aryliodine(III) dichlorides by an oxidative halogenation strategy using 30% aqueous hydrogen peroxide in fluorinated alcohol.
نویسندگان
چکیده
Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.
منابع مشابه
Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress.
Several new analogs of salicylaldehyde isonicotinoyl hydrazone (SIH) and salicylaldehyde benzoyl hydrazone (SBH) that contain an aryl boronic ester (BSIH, BSBH) or acid (BASIH) in place of an aryl hydroxide have been synthesized and characterized as masked metal ion chelators. These pro-chelators show negligible interaction with iron(III), although the boronic acid versions exhibit some interac...
متن کاملBoric Acid: As a Green Catalyst for the Conversion of Aldehydes and Ketones to Gem-Dihydroperoxides Using Aqueous 30% H2O2
Gem-dihydroperoxides as nearly stable peroxidic derivatives of aldehydes and ketones are known important intermediates in synthesis of anti-malaria drugs. Also, because containing high concentration of peroxidic oxygen, recently, some of these compounds have been used as solid, efficient and powerful oxidants in many oxidation organic reactions. Generally, these compounds are synthesiz...
متن کاملOxidative aromatization of some 1,4-dihydropyridines by aqueous hydrogen peroxide in ethanol
Some 3, 5-diacyl or 3,5-diester 1,4-dihydropyridines were oxidized to the corresponding pyridine derivatives using hydrogen peroxide in aqueous ethanol in the presence of potassium bromide and acetic acid as the catalysts. The reaction was carried out in ethanol and products were isolated in high to excellent yields. However, oxidation of 3,5-diacetyl 1,4-dihydropyridines is slower than 3,5-die...
متن کاملEpoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400
Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...
متن کاملSelective oxidation of sulfides to sulfoxides by a vanadium-based catalyst using 30% hydrogen peroxide
The vanadium-based catalyst, acts as a homogeneous catalyst for the selective oxidation of various kinds of sulfides with 30% aqueous H2O2. Vanadium-based catalyst was successfully used as the oxygen source for the oxidation of sulfides to sulfoxides for the first time. The sulfoxides were obtained in a good way to high yields without any detectable over-oxidation to sulfones under normal condi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2010